Fusion of Sparse Reconstruction Algorithms for Multiple Measurement Vectors
نویسندگان
چکیده
We consider the recovery of sparse signals that share a common support from multiple measurement vectors. The performance of several algorithms developed for this task depends on parameters like dimension of the sparse signal, dimension of measurement vector, sparsity level, measurement noise. We propose a fusion framework, where several multiple measurement vector reconstruction algorithms participate and the final signal estimate is obtained by combining the signal estimates of the participating algorithms. We present the conditions for achieving a better reconstruction performance than the participating algorithms. Numerical simulations demonstrate that the proposed fusion algorithm often performs better than the participating algorithms. Index Terms Compressed Sensing, Fusion, Sparse Signal Reconstruction, Multiple Measurement Vectors
منابع مشابه
Fast Reconstruction of SAR Images with Phase Error Using Sparse Representation
In the past years, a number of algorithms have been introduced for synthesis aperture radar (SAR) imaging. However, they all suffer from the same problem: The data size to process is considerably large. In recent years, compressive sensing and sparse representation of the signal in SAR has gained a significant research interest. This method offers the advantage of reducing the sampling rate, bu...
متن کاملSparse Recovery Algorithms: Sufficient Conditions in terms of Restricted Isometry Constants
We review three recovery algorithms used in Compressive Sensing for the reconstruction s-sparse vectors x ∈ CN from the mere knowledge of linear measurements y = Ax ∈ Cm, m < N. For each of the algorithms, we derive improved conditions on the restricted isometry constants of the measurement matrix A that guarantee the success of the reconstruction. These conditions are δ2s < 0.4652 for basis pu...
متن کاملA study for establishing a sufficient condition for successful joint support set reconstruction
We aim to derive a new sufficient condition for successful joint support set reconstruction in the multiple measurement vectors (MMV) model [1]. Our MMV model consists of S multiple measurement vectors, S multiple K sparse vectors each having the same support set, and a measurement matrix. Our work here aims to give how many measurements per measurement vector are needed for reliable reconstruc...
متن کاملExploiting Correlation in Sparse Signal Recovery Problems: Multiple Measurement Vectors, Block Sparsity, and Time-Varying Sparsity
A trend in compressed sensing (CS) is to exploit structure for improved reconstruction performance. In the basic CS model (i.e. the single measurement vector model), exploiting the clustering structure among nonzero elements in the solution vector has drawn much attention, and many algorithms have been proposed such as group Lasso (Yuan & Lin, 2006). However, few algorithms explicitly consider ...
متن کاملEfficient Recovery of Jointly Sparse Vectors
We consider the reconstruction of sparse signals in the multiple measurement vector (MMV) model, in which the signal, represented as a matrix, consists of a set of jointly sparse vectors. MMV is an extension of the single measurement vector (SMV) model employed in standard compressive sensing (CS). Recent theoretical studies focus on the convex relaxation of the MMV problem based on the (2, 1)-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1504.01705 شماره
صفحات -
تاریخ انتشار 2015